Ultrahigh Responsivity-Bandwidth Product in a Compact InP Nanopillar Phototransistor Directly Grown on Silicon
نویسندگان
چکیده
Highly sensitive and fast photodetectors can enable low power, high bandwidth on-chip optical interconnects for silicon integrated electronics. III-V compound semiconductor direct-bandgap materials with high absorption coefficients are particularly promising for photodetection in energy-efficient optical links because of the potential to scale down the absorber size, and the resulting capacitance and dark current, while maintaining high quantum efficiency. We demonstrate a compact bipolar junction phototransistor with a high current gain (53.6), bandwidth (7 GHz) and responsivity (9.5 A/W) using a single crystalline indium phosphide nanopillar directly grown on a silicon substrate. Transistor gain is obtained at sub-picowatt optical power and collector bias close to the CMOS line voltage. The quantum efficiency-bandwidth product of 105 GHz is the highest for photodetectors on silicon. The bipolar junction phototransistor combines the receiver front end circuit and absorber into a monolithic integrated device, eliminating the wire capacitance between the detector and first amplifier stage.
منابع مشابه
Ultracompact Position-Controlled InP Nanopillar LEDs on Silicon with Bright Electroluminescence at Telecommunication Wavelengths
Highly compact III−V compound semiconductor active nanophotonic devices integrated with silicon are important for future low power optical interconnects. One approach toward realizing heterogeneous integration and miniaturization of photonic devices is through nanowires/nanopillars grown directly on silicon substrates. However, to realize their full potential, the integration of nanowires/nanop...
متن کاملEpitaxial III-V-on-silicon waveguide butt-coupled photodetectors.
We report silicon waveguide butt-coupled p-i-n InGaAs photodetectors epitaxially grown on silicon-on-insulator substrates by metalorganic chemical vapor deposition. The InGaAs absorption layer that is lattice-matched to InP is selectively grown on patterned SOI substrates, employing metamorphic growth of GaAs and InP buffer layers. We measure a dark current of 2.5 μA and a responsivity of 0.17 ...
متن کاملDesign and analysis of In0.53Ga0.47As/InP symmetric gain optoelectronic mixers
A symmetric gain optoelectronic mixer based on an indium gallium arsenide (In0.53Ga0.47As)/indium phosphide (InP) symmetric heterojunction phototransistor structure is being investigated for chirpedAM laser detection and ranging (LADAR) systems operating in the ‘‘eye-safe” 1.55 lm wavelength range. Signal processing of a chirped-AM LADAR system is simplified if the photodetector in the receiver...
متن کاملPhotonic Integrated Circuits Using III-V Nanopillars Grown on Silicon
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission....
متن کاملHigh-bandwidth uni-traveling carrier waveguide photodetector on an InP-membrane-on-silicon platform.
A uni-traveling carrier photodetector (UTC-PD), heterogeneously integrated on silicon, is demonstrated. It is fabricated in an InP-based photonic membrane bonded on a silicon wafer, using a novel double-sided processing scheme. A very high 3 dB bandwidth of beyond 67 GHz is obtained, together with a responsivity of 0.7 A/W at 1.55 μm wavelength. In addition, open eye diagrams at 54 Gb/s are obs...
متن کامل